
1

IERG4330
Programming Big Data Systems

Resource Management and Infrastructure
for

Big Data Systems
and

Cloud-Native Applications

Prof. Wing C. Lau
Department of Information Engineering

wclau@ie.cuhk.edu.hk

2

Acknowledgements
¢ The slides used in this chapter are adapted from the following sources:

l “Data-Intensive Information Processing Applications,” by Jimmy Lin, University of
Maryland.

-

l “Intro To Hadoop” in UCBerkeley i291 - Analyzing BigData with Twitter, by Bill Graham,
Twitter.

l Ryza of Cloudera Inc, “Can’t we just get along ?”, Spark Summit, 2013
l Cloudera, “Introduction to YARN and MapReduce 2”, SlideShare.net
l Eric Brewer, Google VP of Instructure, “Google Tech Talk – Containers: What, Why,

How ; Google Cloud Innovation”, April 2015
l Ajit Punj, Juan Manuel Camacho, Borg – a presentation for Stanford CS349d, Fall 2018
l Alex Gilkson of CMU, “Cloud-Native Applications and Kubernetes (k8s), 2019
l Cyberlearn CLOUD 2019-2020 (Master) MSE Lecture notes on Kubernetes

https://cyberlearn.hes-so.ch/course/view.php?id=14014
l Kubernauts – The Cloud Cosmonauts “The Kubernetes Learning Slides,” v0.15.1, June

15, 2020.
https://docs.google.com/presentation/d/13EQKZSQDounPC1I6EC4PmqaRmdCrpT3qswQJz9KRCyE/htmlpresent

l Bob Killen, Cloud Native Computing Foundation (CNCF) Ambassador, “Kubernetes – an
Introduction,” July 2019.
https://docs.google.com/presentation/d/1zrfVlE5r61ZNQrmXKx5gJmBcXnoa_WerHEnTxu5SMco/edit#slide=id.g3cfa019267_4_0

l Alex Gilkson of CMU, “Cloud-Native Applications and Kubernetes (k8s), 2019

¢ All copyrights belong to the original authors of the material.

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0
United States. See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

3

Recap:
Dataflow progamming with MapReduce

4

MapReduce
¢ Programmers specify two functions:

map (k, v) → <k’, v’>*
reduce (k’, v’) → <k’’, v’’>*
l All values with the same key are sent to the same reducer
l <a,b>* means a list of tuples in the form of (a,b)

¢ The execution framework handles everything else…

5

g g g g g

f f f f fMap

Fold

MapReduce:
A Dataflow Programming Model with

Roots in Functional Programming

6

combinecombine combine combine

ba 1 2 c 9 a c5 2 b c7 8

partition partition partition partition

mapmap map map

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

a 1 5 b 2 7 c 2 9 8

r1 s1 r2 s2 r3 s3

c 2 3 6 8

7

MapReduce: A Dataflow Programming Model
with Roots in Functional Programming

¢ What is the Advantage of adopting a “Dataflow” Model ?
¢ What is the Advantage of adopting a “Functional

Programming” approach ?
l There are NO Side Effects of Computation for PURE Functional

Programming

=> Significantly Simplify Parallelization & Failure Recovery
Consider the following (non-functional) imperative programming example:

var x = 0 ;
async { x = x + 1 }
async { x = x * 2 }

// x can be 0, 1 or 2

References:
1. Kevin Hammond, “Why Parallel Functional Programming Matters: Panel Statement”, Reliable Software Technologies, Ada-

Europe 2011, LNCS Vol. 6652, 2011, http://link.springer.com/book/10.1007/978-3-642-21338-0
2. Martin Odersky, “Working Hard to Keep it Simple -- Why Functional Programming & Parallel-processing is a good fit,” Keynote

for OSCON Java 2011, https://www.youtube.com/watch?v=3jg1AheF4n0

8

But MapReduce is NOT good for…
¢ Jobs require multiple iterations and multiple-stages of

operations

¢ Low-latency jobs

¢ Jobs that need shared state/ coordination
l Tasks are shared-nothing
l Shared-state requires scalable state store

¢ Jobs on small datasets

¢ Finding individual records

For some of these, we will introduce alternative
computational models/ platforms, e.g. GraphLab, Spark, later
in the course

1/10/24 Jure Leskovec, Stanford CS246: Mining Massive Datasets,
http://cs246.stanford.edu

9

Big Data Programming Models beyond MapReduce
¢ Many of them still takes the “Dataflow” programming model BUT

generalize MapReduce by:
i) Relaxing the Rigid (fixed) structure of the Dataflow graph (topology)

imposed by MapReduce, e.g.
l Many can support Dataflow computations which can be expressed as a

Directed Acyclic Graph (DAG), e.g. Dryad, Tez, Spark, Storm, etc.
l More recent ones can even support computations which correspond to Stateful

and Loopy Dataflow graphs, e.g. Naiad (from MSR) and Tensorflow (Google)
ii) Support Higher-level programming construct, e.g.

l Use SQL-like query language, e.g. Hive and Spark SQL, and provide under-
the-hood parallelization and optimization, by automatically transform the
computation to some coordinated MapReduce job(s).

l Create new Dataflow languages and systems which specify parallel
operations/transformation on a distributed collections of (data) objects, e.g.
LINQ, DryadLINQ, Pig-latin/Pig, Spark

¢ Other Big Data programming frameworks/ models for specific types of input
data, e.g. to support Graph-based problems (e.g. GraphLab, Pregel) or
Stream-based computation (Storm).

10

The Big Data Processing Stack:

11

Typical Architecture: Different Component Systems
for various Services and Functionalities

12

Typical Architecture: Different Component Systems
for various Services and Functionalities

e.g. HiveQL of Hive (Facebook),
BigSQL (IBM), Apache Drill,
Cloudera Impala ; Pig (Yahoo);
Spark SQL, DryadLINQ,
other NoSQL query languages
(NoSQL = Not-only-SQL)

e.g. Hadoop/ MapReduce,
GraphLab (CMU/UWash),
Spark (Berkeley), Storm/Heron
(Twitter), Dryad (Microsoft), TeZ,
Pregel/ Giraph (Apache), Flink

e.g. BigTable(Google)/ Hbase(open)
SimpleDB, DynamoDB (Amazon),
Cassandra(Facebook)

Distributed FileSystems:
e.g.HDFS, GFS, ceph
Cloud-based Data-Store Service/System:
e.g. Amazon S3, EBS, OpenStack Swift ,
Amazon Dynamo <key,value> store

13

Architecture Sample 1: The (old) Google-way
(circa 2004)

14

Architecture Sample 2: The Hadoop-way (e.g. Yahoo)
(circa 2007)

15

Beyond Hadoop/MapReduce:
Another Main-stream Big Data Processing Framework
¢ Spark & Big (Berkeley) Data Analytic Stack (BDAS) by UC Berkeley

Reference: https://amplab.cs.berkeley.edu/software/

16

Recap:
Runtime Support & Resource Management

for MapReduce/ Hadoop 1.0

17

MapReduce
¢ Programmers specify two functions:

map (k, v) → <k’, v’>*
reduce (k’, v’) → <k’’, v’’>*
l All values with the same key are sent to the same reducer

¢ The execution framework handles everything else…

What’s “everything else”?

18

The MapReduce “Runtime”
¢ Handles scheduling

l Assigns workers to map and reduce tasks

¢ Handles “data distribution”
l Moves processes to data

¢ Handles synchronization
l Gathers, sorts, and shuffles intermediate data

¢ Handles errors and faults
l Detects worker failures and restarts

¢ Everything happens on top of the distributed Google File
System (or HDFS)

19

Google File System

• Chunk servers hold blocks of the file (64MB per chunk)
• Replicate chunks (chunk servers do this autonomously). More bandwidth

and fault tolerance
• Master distributes, checks faults, rebalances (Achilles heel)
• Client can do bulk read / write / random reads

Ghemawat, Gobioff, Leung, 2003

20
Adapted from (Ghemawat et al., SOSP 2003)

(file name, block id)

(block id, block location)

instructions to datanode

datanode state
(block id, byte range)

block data

HDFS namenode

HDFS datanode

Linux file system

…

HDFS datanode

Linux file system

…

File namespace
/foo/bar

block 3df2

Application

HDFS Client

HDFS Architecture

21

Namenode Responsibilities
¢ Managing the file system namespace:

l Holds file/directory structure, metadata, file-to-block mapping,
access permissions, etc.

¢ Coordinating file operations:
l Directs clients to datanodes for reads and writes
l No data is moved through the namenode

¢ Maintaining overall health:
l Periodic communication with the datanodes
l Block re-replication and rebalancing
l Garbage collection

¢ Namenode can be Archille’s heel – Single point of failure or
bottleneck of scalability for the entire FS:
l Need to have a Backup Namenode HDFS (or Master in GFS)
l Compared to the fully-distributed approach in Ceph

22

Resource Management Platforms
for Big Data Processing Clusters

23

Putting everything together…

datanode daemon

Linux file system

…

tasktracker

slave node

datanode daemon

Linux file system

…

tasktracker

slave node

datanode daemon

Linux file system

…

tasktracker

slave node

namenode

namenode daemon

job submission node

jobtracker

24

split 0
split 1
split 2
split 3
split 4

worker

worker

worker

worker

worker

Master

User
Program

output
file 0

output
file 1

(1) submit

(2) schedule map (2) schedule reduce

(3) read
(4) local write

(5) remote read
(6) write

Input
files

Map
phase

Intermediate files
(on local disk)

Reduce
phase

Output
files

Adapted from (Dean and Ghemawat, OSDI 2004)

Job Scheduling for MapReduce/Hadoop 1.0

25

Practical Scalability Limits of Hadoop1.0
v Scalability

v Maximum Cluster Size – 4000 Nodes
v Maximum Concurrent Tasks – 40000
v Coarse synchronization in Job Tracker

v Single point of failure
v Failure kills all queued and running jobs
v Jobs need to be resubmitted by users

v Restart is very tricky due to complex state

26

YARN for Hadoop 2.0

¢ YARN (Yet Another Resource Negotiator) provides a
resource management platform for Cluster to support
general Distributed/Parallel Applications/Frameworks
beyond the MapReduce computational model.

V. K. Vavilapalli, A. C. Murthy, “Apache Hadoop YARN: Yet Another Resource Negotiator”, in
ACM Symposium on Cloud Computing (SoCC) 2013.

27

1/10/24 Jure Leskovec, Stanford CS246: Mining Massive Datasets,
http://cs246.stanford.edu

Hadoop 1.0 vs. Hadoop 2.0 Ecosystem

28

Scalability/Flexibility Issues of the
MapReduce/ Hadoop 1.0 Job Scheduling/Tracking

¢ The MapReduce Master node (or Job-tracker in Hadoop 1.0)
is responsible to monitor the progress of ALL tasks of all jobs
in the system and launch backup/replacement copies in case
of failures
l For a large cluster with many machines, the number of tasks to be

tracked can be huge
=> Master/Job-Tracker node can become the performance bottleneck

¢ Hadoop 1.0 platform focuses on supporting MapReduce as its
only computational model ; may not fit all applications

¢ Hadoop 2.0 introduces a new resource management/ job-
tracking architecture, YARN [1], to address these problems

[1] V.K. Vavilapalli, A.C.Murthy, “Apache Hadoop YARN: Yet Another Resource Negotiator,”
ACM Symposium on Cloud Computing 2013.

29

A Big Data Processing Stack with YARN

30

Hadoop2.0/YARN Architectural Overview

31

YARN Framework

32

1/10/24 Jure Leskovec, Stanford CS246: Mining Massive Datasets,
http://cs246.stanford.edu

¢ Multiple frameworks (Applications) can run on top of YARN to share a Cluster, e.g.
MapReduce is one framework (Application), MPI, or Storm are other ones.

¢ YARN splits the functions of JobTracker into 2 components: resource allocation
and job-management (e.g. task-tracking/ recovery):
l Upon launching, each Application will have its own Application Master (AM), e.g. MR-AM in the figure

above is the AM for MapReduce, to track its own tasks and perform failure recovery if needed
l Each AM will request resources from the YARN Resource Manager (RM) to launch the Application’s

jobs/tasks (Containers in the figure above) ;
l The YARN RM determines resource allocation across the entire cluster by communicating with/

controlling the Node Managers (NM), one NM per each machine.

Cluster Resource Management w/ YARN in Hadoop2.0

33

YARN Execution Sequence

34

YARN Application Models
¢ Application Master (AM) per Job

l Most simple for batch
l Used by MapReduce (v2)

¢ Application Master per Session
l Runs multiple jobs on behalf of the same user
l Added in Tez ;
l Also for Spark (one AM per SparkContext, w/ Long-

lived enhancement)

¢ AM as permanent service, supporting Multiple
Users
l Always on, waits around for jobs to come in
l Used for Impala (with Llama Adapter to support

separate-user/queue billing of YARN)

35

Example: Running MapReduce (v2) on YARN

¢ Each MapReduce Job has a separate instance of AM

¢ A Separate MapReduce Job History Server to track MR
job history

¢ YARN runs Shuffle as a persistent, auxiliary service

36

37

38

39

40

41

Hadoop 2.0 vs. Hadoop1.0
v Hadoop 2.0 includes YARN’s Multi-tenant Support for different Big Data

Processing Frameworks
v YARN Fault Tolerance and Availability

v Resource Manager
v No single point of failure – state saved in ZooKeeper
v Application Masters are restarted automatically on RM restart

v Application Master
v Optional failover via application-specific checkpoint
v MapReduce applications pick up where they left off via state saved in HDFS

v Wire Compatibility
v Protocols are wire-compatible
v Old clients can talk to new servers
v Rolling upgrades

v Besides YARN, Hadoop 2.0 also supports High Availability and Federation
v High Availability takes away the Single Point of failure from HDFS Namenode and

introduces the concept of the QuorumJournalNodes to sync edit logs between
active and standby Namenodes

v Federation allows multiple independent namespaces (private namespaces, or
Hadoop as a service)

42

Apache Mesos
(http://mesos.apache.org)

httphtt
¢ Another competing Cluster Resource Management platform

¢ Enable multiple frameworks to share same cluster resources
(e.g., MapReduce, Storm, Spark, HBase, etc)

¢ Originated from UCBerkeley’s BDAS project ;
l B. Hindman et al, “Mesos: A Platform for Fine-Grained Resource Sharing in the Data

Center”, Usenix NSDI 2011.

¢ Hardened via Twitter’s large scale in-house deployment
l 6,000+ servers,
l 500+ engineers running jobs on Mesos

¢ Third party Mesos schedulers
l AirBnB’s Chronos ; Twitter’s Aurora

¢ Mesospehere: startup to commercialize Mesos

Mesos
Spark

Spark
Stream. Spark

SQL

BlinkDB
GraphX

MLlib
MLBase

HDFS, S3, …
Tachyon

Motivation of Mesos

Hadoop

Storm

MPI
Shared cluster

Previously: Static partitioning of
a cluster among different big
data processing frameworks

Mesos aims to achieve
dynamic sharing of cluster

across different frameworks

u Hard to fully utilize machines
(e.g., X GB RAM & Y CPUs)

u Hard to scale elastically (to take
advantage of statistical multiplexing)

u Hard to deal with failures

44

Mesos as a Data-Center “Kernel”

¢ Like YARN, Mesos
provides a Node
Abstraction of the
entire Cluster

¢ Like YARN, Mesos
is a common
resource sharing
layer over which
diverse
frameworks can
run

45

System Architecture of Mesos

46

Framework Isolation

¢ Mesos uses OS isolation mechanisms, such as Linux containers
and Solaris projects

¢ Containers currently support CPU, memory, IO and network
bandwidth isolation

¢ Not perfect, but much better than no isolation

47

Mesos’ use of Container Technology

48

Design Elements

¢Fine-grained sharing:
l Allocation at the level of tasks within a job
l Improves utilization, latency, and data locality

¢Resource offers:
l Simple, scalable application-controlled scheduling

mechanism

Element 1: Fine-Grained Sharing

Framework 1

Framework 2

Framework 3

Coarse-Grained Sharing (HPC): Fine-Grained Sharing (Mesos):

+ Improved utilization, responsiveness, data locality

Storage System (e.g. HDFS) Storage System (e.g. HDFS)

Fw. 1

Fw. 1Fw. 3

Fw. 3 Fw. 2Fw. 2

Fw. 2

Fw. 1

Fw. 3

Fw. 2Fw. 3

Fw. 1

Fw. 1 Fw. 2Fw. 2

Fw. 1

Fw. 3 Fw. 3

Fw. 3

Fw. 2

Fw. 2

50

Element 2: Resource Offers
¢Option: Global scheduler

l Frameworks express needs in a specification language, global
scheduler matches them to resources

+ Can make optimal decisions
¢– Complex: language must support all framework
needs
– Difficult to scale and to make robust
– Future frameworks may have unanticipated needs

51

Element 2: Resource Offers
¢Mesos: Resource offers

l Offer available resources to frameworks, let them pick
which resources to use and which tasks to launch

+ Keep Mesos simple, let it support future frameworks

- Decentralized decisions might not be optimal

Mesos Architecture

MPI job

MPI
scheduler

Hadoop job

Hadoop
scheduler

Allocation
module

Mesos
master

Mesos slave
MPI

executor

Mesos slave
MPI

executor

tasktask

Resource
offer

Pick framework to
offer resources to

Mesos Architecture

MPI job

MPI
scheduler

Hadoop job

Hadoop
scheduler

Allocation
module

Mesos
master

Mesos slave
MPI

executor

Mesos slave
MPI

executor

tasktask

Pick framework to
offer resources toResource

offer

Resource offer =
list of (node, availableResources)

E.g. { (node1, <2 CPUs, 4 GB>),
(node2, <3 CPUs, 2 GB>) }

Mesos Architecture

MPI job

MPI
scheduler

Hadoop job

Hadoop
scheduler

Allocation
module

Mesos
master

Mesos slave
MPI

executor
Hadoop
executor

Mesos slave
MPI

executor

tasktask

Pick framework to
offer resources to

task
Framework-specific

scheduling

Resource
offer

Launches and
isolates executors

Another Resource Offering Example

Optimization: Filters

• Let frameworks short-circuit rejection by
providing a predicate on resources to be
offered
»E.g. “nodes from list L” or “nodes with > 8 GB RAM”
»Could generalize to other hints as well

• Ability to reject still ensures correctness when
needs cannot be expressed using filters

Revocation

• Mesos allocation modules can revoke (kill)
tasks to meet organizational SLOs

• Framework given a grace period to clean up

• “Guaranteed share” API lets frameworks
avoid revocation by staying below a certain
share

Scheduler Callbacks

resourceOffer(offerId, offers)
offerRescinded(offerId)
statusUpdate(taskId, status)
slaveLost(slaveId)

Executor Callbacks

launchTask(taskDescriptor)
killTask(taskId)

Executor Actions

sendStatus(taskId, status)

Scheduler Actions

replyToOffer(offerId, tasks)
setNeedsOffers(bool)
setFilters(filters)
getGuaranteedShare()
killTask(taskId)

Mesos API

A Big Data Processing Stack w/ Mesos

Mesos only performs inter-framework scheduling (e.g. fair
sharing), which is easier than intra-framework scheduling

0

0.2

0.4

0.6

0.8

1

-10000 10000 30000 50000

Ta
sk

 S
ta

rt
 O

ve
rh

ea
d

(s
)

Number of Slaves

Result:
Scaled to 50,000
emulated slaves,
200 frameworks,
100K tasks (30s len)

Scalability

Fault Tolerance

• Mesos master has only soft state: list of
currently running frameworks and tasks

• Rebuild when frameworks and slaves re-
register with new master after a failure

Result: fault detection and recovery in ~10 sec

Mesos Implementation Statistics

§ 20,000 lines of C++

§ Master failover using ZooKeeper

§ Frameworks ported: Hadoop1.0, MPI, Storm, etc

§ Specialized framework: Spark, for iterative jobs
(up to 20× faster than Hadoop)

§ Open source under Apache license

Other Schedulers/ Resource Management
Platforms for

Big Data Processing Clusters

64

Approach 1: Centralized Resource Management

A. Verma, L. Pedrosa, “Large-scale cluster management at Google with Borg”, Eurosys 2015

M. Schwarzkopf, A. Konwinski, M.Abd-El-Malek, J. Wilkes, “Omega: flexible, scalable schedulers for large
compute clusters,” Eurosys 2013

65

Design Options for Centralized Resource Management:
Monolithic[Hadoop1.0, YARN] vs.Two-level[Mesos] vs.Shared-state[Omega, Borg]

66

High-level Architecture of Google’s Borg

A. Verma, L. Pedrosa, “Large-scale cluster management at Google with Borg”, Eurosys 2015

67

Borg Architecture - Borgmaster

● Each cell contains a Borgmaster
● Each Borgmaster consists of 2 processes:

○ Main Borgmaster process
○ Scheduler

● Multiple replicas of each Borgmaster
● Role of (elected leader) Borgmaster:

○ submission of job, termination of any of job’s task

68

Borg Architecture - Borglet

● Local Borg agent on every cell
○ starts/stops/restarts tasks
○ Manages local resources
○ Rolls over debug logs

● Polled by Borgmaster to get machine’s current state
● If a Borglet does not respond to several poll

messages, it is marked as down
○ Tasks re-distributed
○ If communication is restored, Borgmaster tells

Borglet to kill rescheduled tasks

69

How does Borg work?

● Users submit “jobs”
○ Each “job” contains 1+ “task” that all run the same

program/binary
○ Runs inside containers (not VMs as it would cost

higher latency)
● Each “job” runs on one “cell”

○ A “cell” is a set of machines that run as one unit

● Two main types of jobs:
○ “Prod” job : long-running server jobs,

higher priority
○ “Non-prod” job : quick batch jobs, lower

priority

70

How does Borg work?

● Allocs:
○ Reserved set of resources in one machine
○ Can run multiple instances of a task, different

tasks from many jobs, or future tasks
● Priority and quota:

○ Each job has a priority
○ Preemption disallowed between “prod” jobs.
○ Quota refers to vector of resource quantities for

period of time
● Support for naming and monitoring

71

Borg Architecture - Scheduling

● Borgmaster adds new jobs to a pending queue after
recording it in the Paxos store

● A scheduler (primarily operates on tasks) scans and
assigns tasks to machines
○ Feasibility checking
○ Scoring

● E-PVM vs “best-fit”
○ E-PVM leaves headroom for load-spikes but has

increased fragmentation
○ Best-fit fills machines as tightly as possible, but

hurts “bursty loads”
● Current model is a hybrid of both

○ Borg will kill lower priority tasks until it finds room
for an assigned task

72

Techniques Borg uses for managing utilization
● Cell-sharing: sharing prod and non-prod tasks

○ Resource reclaiming
○ Not sharing prod and non-prod work would increase

machine needs by 20-30%
● Large cells: to allow large computations and decrease

fragmentation
○ splitting up jobs and distributing them requires significantly

more machines
● Fine-grained resource requests

○ fixed size containers/VMs not ideal
○ instead there are “buckets” of CPU/memory requirements

● Resource reclamation: jobs specify limits
○ Borg can kill tasks that use more RAM or disk space than

requested
○ Throttle CPU usage
○ Prioritize prod tasks over non-prod

73

Borg Architecture - Scalability

● Ultimate scalability limit is unknown

○ Single Borgmaster can manage thousands of
borglets

○ Rates above 10,000 tasks per minute

○ Busy Borgmaster uses 10-14 CPU cores and
50GiB RAM

74

Borg - Achieving Availability

● To mitigate inevitable failures, Borg will:
○ Automatically reschedule evicted tasks
○ Reduce correlated failures by distributing across

failure domains
○ Limits downtime due to maintenance
○ Use “declarative desired-state representations

and idem-potent mutating operations” to ease
resubmission of forgotten requests

○ Avoid task to machine pairings that cause
crashes

○ Use a logsaver to recover critical data written to
a local disk

● Achieve 99.99% availability in practice

75

Isolation
● Security:

○ Linux chroot command used for process
isolation

○ Standard sandboxing techniques used for
running external software

● Performance:
○ Borg makes explicit distinction between

LS (latency-intensive) tasks and batch
tasks. Helps for priority-based
preemption

○ Borg uses notion of compressible
resources (CPU cycles, disk I/O
bandwidth) and non-compressible
resources (RAM, disk space)

76

Why is it important to have isolation, and
how does Borg implement it?
● To protect an app from Noisy, Nosy and

Messy neighbors
● Sharing machines between applications

increases utilization, but isolation is needed
to prevent tasks from interfering
○ Security: rogue tasks can affect other tasks, and information should not be visible

between tasks
○ Performance:

■ Utilization can be decreased by users inflating resource requests to prevent
interference

■ Again, rogue tasks can affect your task

● Security: Linux chroot jail is the primary
security isolation mechanism

● Performance: Linux cgroup-based container
○ Also appclass is used to help with overload and overcommitment
○ High priority LS (latency-sensitive) tasks

77

Approach 2: Distributed Resource Management

K. Ousterhout et al, “Sparrow: Distributed, Low Latency Scheduling”, ACM SOSP 2013

E. Boutin et al, “Apollo: Scalable and Coordinated Scheduling for Cloud-Scale Computing”, Usenix OSDI 2014

78

High-level Distributed Resource Management
Architecture of Microsoft’s Apollo

E. Boutin et al, “Apollo: Scalable and Coordinated Scheduling for Cloud-Scale Computing”, OSDI 2014

79

Centralized vs. Distributed Resource Management

80

Approach 3: Hybrid (Distributed and Centralized)
Resource Management in Microsoft’s Mercury

K. Karanasos et al, “Mercury: Hybrid Centralized and Distributed Scheduling in Large Shared Clusters”,
Usenix ATC 2015

81

Mercury Architecture over YARN

82

Operations and Implementation of Mercury

Resource
Management

Platform for Clusters

Scheduling/Resource Sharing
paradigm

Scalability
Multiple Programming

Frameworks/ Multi-
tenant Support

Hadoop 1.0 Centralized Limited but OK No

YARN in Hadoop 2.0 Centralized Good Yes

Mesos
Centralized (Two-level) via

Resource Offers to Individual
Frameworks

Better Yes

Apollo
Distributed and Loosely

Coordinated (via Expected
Resource Wait-Time matrix)

Very Good Yes

Borg, Omega

Centralized per-cell BorgMaster
which allows multiple // schedulers
to performs optimistic-concurrent

allocation followed by checking

Very Good Yes

Mercury

Hybrid
(Centralized and Distributed

scheduling for Big and Small jobs
respectively)

Very Good Yes

Comparisons of Recent Resource Management
Platforms for Clusters

Cloud Native Applications 84

Cloud-Native Applications
(Micro-service oriented)

85

Cloud-Native Applications: Motivation
¢ Elasticity and Ubiquity of Cloud Infrastructure (Data-Center-

scale Computing) have enabled new generation of
applications, use-cases and business opportunities:
l Netflix, Airbnb, Spotify, Pinterest, Snapchat, Whatspp,…

¢ Example: Netflix:
l Value Proposition (Competitive Advantage):

• Low Cost Video Streaming with Superb User-experience at scale
l Application Properties and Unique Requirements

• > 100 millions of users in 190 countries (mostly in US)
• Vast variance in Load, within minutes (evenings, campaigns, …)
• 10,000s of servers
• 1000s of daily application changes across 100s of functions

• Video streaming, Catalog, Recommendations, subscription
• ~1 update every minute

1/10/24

86

Cloud-Native Applications:
Requirements-driven Design Principles

¢ Low Cost + Variance in Load + Superb User Experience
l Can’t afford Over or Under Provisioning => Auto-Scaling Elasticity

¢ Large-scale Infrastructure + Inevitable Hardware Failures +
Superb User Experience
l Must accommodate HW failures w/o downtime => Design for Failure

¢ Frequent Application Updates + Large-scale + Superb User
Experience
l Can’t afford redeploying everything everytime => Modularity
l Can’t afford testing everything everytime => Stable Internal APIs

¢ Frequent Application Updates + Low Cost + Superb User
Experience
l Can’t afford manual QA/ admin effort for each update => Automation

in Deployment

87

Cloud-Native Applications:
Design-driven Common Services

88

Evolution of Platforms for
Cloud-Native Applications:

¢ New Platforms emerged, offering common services required
by Cloud-Native Applications:
l Auto-Scaling, Replication, Load-Balancing, Health Monitoring, Service

Discovery, Application-Level Routing, Programmability
l Started in form of “Platform as a Service” (PaaS)
l Eventually generalized to the Container-based Orchestration approach

Cloud Native Applications 89

Different forms of
Cloud-based Computing Services/Offerings

from Google

Cloud Native Applications 90

Deploying Cloud-Native
(Micro-service oriented)

Applications

Container Technologies to our rescue !

Cloud Native Applications 91

VMs vs. Containers

Cloud Native Applications 92

Virtual Machine vs. Container

Source: Claus Pahl, “Containerization and the PaaS Cloud,” IEEE Cloud Computing Magazine,
May/June 2015

(e.g. Docker)

Host OS kernel with Light-Weight
Virtualization support, e.g. LXC (LinuX Container)

Cloud Native Applications 93

Basic Operations of a Docker system

Source
Code

Repository

Docker
file
For
A

Docker
Engine

Docker
Container

Image
Registry

Build

D
ocker

Host 2 OS 2 (Linux)

Container A

Container B

Container C

Container A

Push

Search Pull

Run

Host 1 OS
(Linux)

Cloud Native Applications 94

¢ Units of software delivery (ship it!)

● run everywhere

– regardless of kernel version

– regardless of host distribution

– (but container and host architecture must match*)

● run anything

– if it can run on the host, it can run in the container

– i.e., if it can run on a Linux kernel, it can run

*Unless you emulate CPU with QEMU and binfmt

Docker Containers

Cloud Native Applications 95

¢ NOT A Virtual Hark Disk (VHD) file

¢ NOT A FILESYSTEM

¢ uses a Union File Systemn File System

¢ a read-only Layer

¢ do not have state

¢ Basically a tar file

¢ Has a hierarchy

• Arbitrary depth

• Fits into the Docker Registry

Docker Image structure

https://docs.docker.com/terms/layer/%23ufs-def
https://docs.docker.com/terms/layer/%23layer-def

Cloud Native Applications 96

Google’s Kubernetes: -
Merging 2 Different Types of Containers

Cloud Native Applications 97

Hypervisors vs. Linux Containers

Hardware
Operating System

Hypervisor
Virtual Machine

Operating
System

Bins / libs

App App

Virtual Machine

Operating
System

Bins / libs

App App

Hardware
Hypervisor

Virtual Machine

Operating
System

Bins / libs

App App

Virtual Machine

Operating
System

Bins / libs

App App

Hardware
Operating System

Container

Bins / libs

App App

Container

Bins / libs

App App

Type 1 Hypervisor Type 2 Hypervisor Linux Containers

Containers are isolated, but share OS
and, where appropriate, libs / bins.

Cloud Native Applications 98

its

Cloud Native Applications 99

Why Containers ?
¢ Ease of development:

l User makes jobs based on containers ; the cluster/cloud schedule those
jobs for them

• User don’t need to worry about machines or the OS

¢ High Resource Utilization: (more efficient)
l The scheduler can pack many containers per machine
l Can mix Live-services and Batch workload

• Use Batch-job to fill in the holes

¢ Ease of Operation: (fewer staff per job)
l e.g. All jobs use latest security patches
l More shared code among projects (shared services and code)

Cloud Native Applications 100

Kubernetes (K8s)
κυβερνήτης: Greek for “pilot” or “helmsman of a ship”

The open-source cluster manager from Google

¢ Container Orchestrator

¢ Run Docker Container

¢ Support multiple cloud and bare-metal environments

¢ Inspired and informed by Google’s experiences & internal
systems, e.g. the Borg scheduler

¢ Open source, written in Go:
l Google has donated it to Cloud Native Computing Forum (CNCF)

Key: Kubernetes manages Applications NOT Machines

Cloud Native Applications 101

Kubernetes: Higher Level of Abstraction

Cloud Native Applications 102

Kubernetes – Google’s path towards
“Cloud-native” Applications

¢ Kubernetes serves as a distributed platform for Hosting and
Orchestrating Containers in a clustered environment
l Support: Container Grouping (Pods), Replication, Scheduling,

Load-Balancing, Auto-Healing, Scaling, Service Discovery, etc .

¢ Cloud-native Apps often structured as Interacting Microservices
l Encapsulated states with APIs, like “Objects”
l Mix of Programming Languages
l Mix of Teams

Cloud Native Applications 103

Services Model
¢ Each app lives in an environment of shared services

l Storage, monitoring, logging
l Master election, deployment, testing

¢ Services are Abstract
l A “Service” is just a long-lived abstract name
l Varied Implementations over time (versions)

• Multiple versions running at a time
• Required for “canary” testing -- deploy new version bit-by-bit gradually

• Usually new versions are backward compatible
• Sometimes not => must eventually update ALL clients
• Running multiple versions gives clients/users some time to update

l Services can be (and often are) updated independently

¢ Kubernetes routes to the right implementation

Cloud Native Applications 104

Managing Dependencies w/ K8s

Cloud Native Applications 105

Running/ Managing Services w/ K8s

Cloud Native Applications 106

Managing Service Dependenices w/ K8s
Example: Rolling Upgrade with Labels

Cloud Native Applications 107

System Architecture of Kubernetes

Cloud Native Applications 108

Recall - The Architecture of Google’s Borg

A. Verma, L. Pedrosa, “Large-scale cluster management at Google with Borg”, Eurosys 2015

Kubernetes Architecture Overview

Source: Introduction to Kubernetes

Kubernetes Architecture

https://docs.google.com/presentation/d/1zrfVlE5r61ZNQrmXKx5gJmBcXnoa_WerHEnTxu5SMco/edit

How Kubernetes works?

In Kubernetes, there is one (or more) master node and
multiple worker nodes, each worker node can handle multiple

pods. Pods are just a bunch of containers clustered together
as a working unit. You can start designing your applications

using pods. Once your pods are ready, you can specify pod
definitions to the master node, and how many you want to

deploy. From this point, Kubernetes is in control. It takes the

pods and deploys them to the worker nods.
Source: https://itnext.io/successful-short-kubernetes-stories-for-devops-architects-677f8bfed803

50K feet on how Kubernetes works

https://itnext.io/successful-short-kubernetes-stories-for-devops-architects-677f8bfed803

Kubernetes’ High-Level Architecture Overview

Source: https://www.weave.works/blog/what-does-production-ready-really-mean-for-a-kubernetes-cluster

https://www.weave.works/blog/what-does-production-ready-really-mean-for-a-kubernetes-cluster

Kubernetes’ High-Level Architecture Overview

Core Concepts of Kubernetes

114

Borg vs. Kubernetes Comparisons:
● Borg is a predecessor to Kubernetes
● Borg groups tasks by 'job’ and simple numeric index; Kubernetes adds

'labels' for greater flexibility.
● Kubernetes allows for Docker and other containers, while Borg only

allows LMCTFY
● Borg exposes the API of its various components to allow external

program to access/control cluster-resource directly ; All accesses to a
K8s-cluster must go through a single-point-of-contact: the API-server

● Single IP per machine in Borg complicates things
○ Because of Linux namespaces, VMs, IPv6, and software-defined

networking, Kubernetes assigns every “pod” and service its own
IP address

○ Allows developers to choose ports and removes the infrastructure
complexity of managing ports

● Borg is not open source or available for use outside of Google unlike
Kubernetes
○ Both work on bare metal, but Kubernetes can work on various

cloud hosting providers, “such as Google Compute Engine.”

Core Concepts of Kubernetes (2)● Controllers
○ Deployments →
○ ReplicaSet →
○ ReplicationController →
○ DaemonSet →

● StatefulSets →
● ConfigMaps →
● Secrets →
● Persistent Volumes (attaching storage to containers) →
● Life Cycle of Applications in Kubernetes →

○ Updating Pods
○ Rolling updates
○ Rollback

More Concepts of Kubernetes

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/workloads/controllers/replicationcontroller/
https://kubernetes.io/cn/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/cn/docs/concepts/workloads/controllers/deployment/

116

What is a Deployment in K8s ?
● A Deployment provides declarative updates for Pods and

ReplicaSets, specifying the “desired” state of a
deployment
● The Deployment Controller is responsible to change the actual

state to the desired state. This is the so-called “reconciliation”
process.

Use Case of Deployments:
● Create a Deployment to rollout a ReplicaSet
● Declare the new state of the Pods
● Rollback to an earlier Deployment revision
● Scale up the Deployment to facilitate more Load
● Pause for Deployment to apply fixes to its

PodTemplateSpec before resume it to start a new rollout

Kubernetes resources explained (1)

Resource (abbr.) [API version] Description

Namespace* (ns) [v1] Enables organizing resources into non-overlapping groups
(for example, per tenant)

Deploying
Workloads

Pod (po) [v1]

ReplicaSet

ReplicationController

Job

CronJob

DaemonSet

StatefulSet

Deployment

The basic (atomic) deployable unit containing one or more
processes in co-located containers

Keeps one or more pod replicas running

The older, less-powerful equivalent of a ReplicaSet

Runs pods that perform a completable task

Runs a scheduled job once or periodically

Runs one pod replica per node (on all nodes or only on
those matching a node selector)

Runs stateful pods with a stable identity

Declarative deployment and updates of pods

Source: Kubernetes in Action book by Marko Lukša

Kubernetes Resources Explained (1)

https://www.manning.com/books/kubernetes-in-action

Resource (abbr.) [API version] Description

Services Service (svc) [v1]

Endpoints (ep) [v1]

Ingress (ing) [extensions/v1beta1]

Exposes one or more pods at a single and stable IP
address and port pair

Defines which pods (or other servers) are exposed
through a service

Exposes one or more services to external clients through
a single externally reachable IP address

Config ConfigMap (cm) [v1]

Secret [v1]

A key-value map for storing non-sensitive config options
for apps and exposing it to them

Like a ConfigMap, but for sensitive data

Storage PersistentVolume* (pv) [v1]

PersistentVolumeClaim (pvc) [v1]

StorageClass* (sc) [storage.k8s.io/v1]

Points to persistent storage that can be mounted into a
pod through a PersistentVolumeClaim

A request for and claim to a PersistentVolume

Defines the type of storage in a PersistentVolumeClaim

Source: Kubernetes in Action book by Marko Lukša

Kubernetes Resources Explained (2)

https://www.manning.com/books/kubernetes-in-action

Resource (abbr.) [API version] Description

Scaling HorizontalPodAutoscaler (hpa)
[autoscaling/v2beta1**]

PodDisruptionBudget (pdb)
[policy/v1beta1]

Automatically scales number of pod replicas based on
CPU usage or another metric

Defines the minimum number of pods that must remain
running when evacuating nodes

Resources LimitRange (limits) [v1]

ResourceQuota (quota) [v1]

Defines the min, max, default limits, and default requests
for pods in a namespace

Defines the amount of computational resources available
to pods in the namespace

Cluster
state

Node* (no) [v1]

Cluster* [federation/v1beta1]

ComponentStatus* (cs) [v1]

Event (ev) [v1]

Represents a Kubernetes worker node

A Kubernetes cluster (used in cluster federation)

Status of a Control Plane component

A report of something that occurred in the cluster

Source: Kubernetes in Action book by Marko Lukša

Kubernetes Resources Explained (3)

https://www.manning.com/books/kubernetes-in-action

Kubernetes resources explained (4)
Resource (abbr.) [API version] Description

Security ServiceAccount (sa) [v1]

Role [rbac.authorization.k8s.io/v1]

ClusterRole*
[rbac.authorization.k8s.io/v1]

RoleBinding
[rbac.authorization.k8s.io/v1]

ClusterRoleBinding*
[rbac.authorization.k8s.io/v1]

PodSecurityPolicy* (psp)
[extensions/v1beta1]

NetworkPolicy (netpol)
[networking.k8s.io/v1]

CertificateSigningRequest* (csr)
[certificates.k8s.io/v1beta1]

An account used by apps running in pods

Defines which actions a subject may perform on which
resources (per namespace)

Like Role, but for cluster-level resources or to grant access
to resources across all namespaces

Defines who can perform the actions defined in a Role or
ClusterRole (within a namespace)

Like RoleBinding, but across all namespaces

A cluster-level resource that defines which security-
sensitive features pods can use

Isolates the network between pods by specifying which
pods can connect to each other

A request for signing a public key certificate

Ext. CustomResourceDefinition* (crd)
[apiextensions.k8s.io/v1beta1]

Defines a custom resource, allowing users to create
instances of the custom resource

Kubernetes Resources Explained (4)

Source: Kubernetes effect by Bilgin Ibryam

Application Dependency on Kubernetes primitives

https://www.infoq.com/articles/kubernetes-effect

Source: https://blog.heptio.com/core-kubernetes-jazz-improv-over-orchestration-a7903ea92ca

How Kubernetes API works: A typical command flow

https://blog.heptio.com/core-kubernetes-jazz-improv-over-orchestration-a7903ea92ca

Source: https://medium.com/payscale-tech/imperative-vs-declarative-a-kubernetes-tutorial-4be66c5d8914

A more detail Kubernetes Command Flow

https://medium.com/payscale-tech/imperative-vs-declarative-a-kubernetes-tutorial-4be66c5d8914

Kubernetes is like Kafka: Event-Driven Architecture

Source: Events, the DNA of Kubernetes

Kubernetes: “Autonomous processes reacting to events from the API server”.

The Event-driven Architecture of Kubernetes
(similar to that of Kafka)

https://www.mgasch.com/post/k8sevents/

Source: Eric Brewer, ACM SoCC Keynote, 2015

Local and Distributed Abstractions/ Patterns

Source: Kubernetes effect by Bilgin Ibryam

Local and Distributed Abstractions/ Patterns

https://www.infoq.com/articles/kubernetes-effect

Cloud Native Applications 127

Who “Manages” Kubernetes?

The CNCF is a child entity of the Linux Foundation and
operates as a vendor neutral governance group.

Cloud Native Applications 128

Project Stats for K8s

● Over 55,000 stars on Github

● 2000+ Contributors to K8s Core

● Most discussed Repository by a large margin

● 70,000+ users in Slack Team

07/2019

Cloud Native Applications 129

Project Stats for K8s

Cloud Native Applications 130

Challenges for
Cloud-based K8s approach vs. Hadoop/YARN

¢ Development of Container-based technologies was geared towards Ephemeral (stateless)
Compute-oriented Pods ;
l Long-term state/ results need to be stored in External Persistent Storage

¢ For Big Data applications, complex stateful information and data stored on the persistent
storage can be large while ephemeral compute nodes may need to be scaled separately

¢ Trade-offs between Data Locality and Compute Elasticity (Still remember the key idea of
“Bringing Computation to the Data” to avoid network-transfer bottleneck ?)

¢ Deploying Large-scale Persistent (stateful) apps/ services, e.g. Hadoop, over Ephemeral-
oriented K8s computing pods remains non-trivial but some solutions are emerging:
l Cloud Native Storage Solutions include: Container Storage Interface (CSI for K8s), Rook w/ Ceph,

Rook w/ Cassandra, Rook w/ CockroachDB etc + Commercial ones, e.g. Trident from NetApp
l Some Hadoop-over-K8s efforts: e.g. BlueK8 and Kubedirectors, will Hadoop/YARN survive ?

¢ Steep learning curve for K8s, e.g. for writing/ configuring app package to be deployed over it:
l YAML, Helm charts, Operators, etc…

Cloud Native Applications 131

Summary of Kubernetes
¢ An Open-source, Cloud-Native Container-based Platform

Cloud Native Applications 132

Backup Slides

More on Borg

Cloud Native Applications 133

High-level Architecture of Google’s Borg

A. Verma, L. Pedrosa, “Large-scale cluster management at Google with Borg”, Eurosys 2015

Cloud Native Applications 134

Borg Architecture - Borgmaster

● Each cell contains a Borgmaster
● Each Borgmaster consists of 2 processes:

○ Main Borgmaster process
○ Scheduler

● Multiple replicas of each Borgmaster
● Role of (elected leader) Borgmaster:

○ submission of job, termination of any of job’s task

Cloud Native Applications 135

Borg Architecture - Borglet

● Local Borg agent on every cell
○ starts/stops/restarts tasks
○ Manages local resources
○ Rolls over debug logs

● Polled by Borgmaster to get machine’s current state
● If a Borglet does not respond to several poll

messages, it is marked as down
○ Tasks re-distributed
○ If communication is restored, Borgmaster tells

Borglet to kill rescheduled tasks

Cloud Native Applications 136

How does Borg work?

● Users submit “jobs”
○ Each “job” contains 1+ “task” that all run the same

program/binary
○ Runs inside containers (not VMs as it would cost

higher latency)
● Each “job” runs on one “cell”

○ A “cell” is a set of machines that run as one unit

● Two main types of jobs:
○ “Prod” job : long-running server jobs,

higher priority
○ “Non-prod” job : quick batch jobs, lower

priority

Cloud Native Applications 137

How does Borg work?

● Allocs:
○ Reserved set of resources in one machine
○ Can run multiple instances of a task, different

tasks from many jobs, or future tasks
● Priority and quota:

○ Each job has a priority
○ Preemption disallowed between “prod” jobs.
○ Quota refers to vector of resource quantities for

period of time
● Support for naming and monitoring

Cloud Native Applications 138

Borg Architecture - Scalability

● Ultimate scalability limit is unknown

○ Single Borgmaster can manage thousands of
borglets

○ Rates above 10,000 tasks per minute

○ Busy Borgmaster uses 10-14 CPU cores and
50GiB RAM

Cloud Native Applications 139

Isolation
● Security:

○ Linux chroot command used for process
isolation

○ Standard sandboxing techniques used for
running external software

● Performance:
○ Borg makes explicit distinction between

LS (latency-intensive) tasks and batch
tasks. Helps for priority-based
preemption

○ Borg uses notion of compressible
resources (CPU cycles, disk I/O
bandwidth) and non-compressible
resources (RAM, disk space)

Cloud Native Applications 140

Borg Architecture - Scheduling

● Borgmaster adds new jobs to a pending queue after
recording it in the Paxos store

● A scheduler (primarily operates on tasks) scans and
assigns tasks to machines
○ Feasibility checking
○ Scoring

● E-PVM vs “best-fit”
○ E-PVM leaves headroom for load-spikes but has

increased fragmentation
○ Best-fit fills machines as tightly as possible, but

hurts “bursty loads”
● Current model is a hybrid of both

○ Borg will kill lower priority tasks until it finds
room for an assigned task

Cloud Native Applications 141

Techniques used by Borg for
Scalability:

○ Score caching
■ Feasibility and scoring is expensive, scores are

cached until properties of the machine or task
change

○ Equivalence class
■ A group of tasks with identical requirements
■ Stems from tasks within a job having identical

requirements and constraints
■ Easier than determining feasibility for every pending

task and scoring every machine
○ Relaxed randomization

■ Scheduler examines machines in a random order
until it has found enough feasible machines to score,
and selects the best from this set

■ Speeds up assignments of tasks to machines

Cloud Native Applications 142

Borg - Achieving Availability

● To mitigate inevitable failures, Borg will:
○ Automatically reschedule evicted tasks
○ Reduce correlated failures by distributing across

failure domains
○ Limits downtime due to maintenance
○ Use “declarative desired-state representations

and idem-potent mutating operations” to ease
resubmission of forgotten requests

○ Avoid task to machine pairings that cause
crashes

○ Use a logsaver to recover critical data written to
a local disk

● Achieve 99.99% availability in practice

Cloud Native Applications 143

Utilization - Main Goal of Borg

● Efficient utilization is very important for Google:
○ A few percentage improvement can save millions of

dollars!
● Cell Sharing
● Large Cells
● Fine-grained Resource Requests
● Resource Reclamation

Cloud Native Applications 144

Borg/Kubernetes Comparisons:
● Borg is a predecessor to Kubernetes
● Borg groups work by 'job'; Kubernetes adds 'labels'

for greater flexibility.
● Kubernetes allows for Docker and other containers,

while Borg only seems to allow LMCTFY
● Single IP per machine in Borg complicates things

○ Because of Linux namespaces, VMs, IPv6, and
software-defined networking, Kubernetes
assigns every “pod” and service its own IP
address

○ Allows developers to choose ports and removes
the infrastructure complexity of managing ports

● Borg is not open source or available for use outside
of Google unlike Kubernetes
○ Both work on bare metal, but Kubernetes can

work on various cloud hosting providers, “such
as Google Compute Engine.”

Cloud Native Applications 145

How does the Borgmaster handle
load spikes while minimizing
fragmentations?
● Hybrid of E-PVM (worst-fit) and best-fit model

○ E-PVM leaves headroom for large spikes, has
large fragmentation

○ Best-fit model fills machines as tightly as
possible
■ Pre-empts by killing lower priority tasks and

add it back to pending queue
○ Large cells used to decrease fragmentation

Cloud Native Applications 146

Techniques Borg uses for managing
utilization● Cell-sharing: sharing prod and non-prod tasks

○ Resource reclaiming
○ Not sharing prod and non-prod work would increase

machine needs by 20-30%
● Large cells: to allow large computations and decrease

fragmentation
○ splitting up jobs and distributing them requires

significantly more machines
● Fine-grained resource requests

○ fixed size containers/VMs not ideal
○ instead there are “buckets” of CPU/memory requirements

● Resource reclamation: jobs specify limits
○ Borg can kill tasks that use more RAM or disk space than

requested
○ Throttle CPU usage
○ Prioritize prod tasks over non-prod

Cloud Native Applications 147

Why is it important to have
isolation, and how does Borg
implement it?● To protect an app from Noisy, Nosy and

Messy neighbors
● Sharing machines between applications

increases utilization, but isolation is needed
to prevent tasks from interfering
○ Security: rogue tasks can affect other tasks, and information should not be visible

between tasks
○ Performance:

■ Utilization can be decreased by users inflating resource requests to prevent
interference

■ Again, rogue tasks can affect your task

● Security: Linux chroot jail is the primary
security isolation mechanism

● Performance: Linux cgroup-based container
○ Also appclass is used to help with overload and overcommitment
○ High priority LS (latency-sensitive) tasks

