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Recap: 
Dataflow progamming with MapReduce
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MapReduce
¢ Programmers specify two functions:

map (k, v) → <k’, v’>*
reduce (k’, v’) → <k’’, v’’>*
l All values with the same key are sent to the same reducer
l <a,b>* means a list of tuples in the form of (a,b)

¢ The execution framework handles everything else…
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MapReduce: 
A Dataflow Programming Model with

Roots in Functional Programming
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combinecombine combine combine

ba 1 2 c 9 a c5 2 b c7 8

partition partition partition partition

mapmap map map

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

a 1 5 b 2 7 c 2 9 8

r1 s1 r2 s2 r3 s3

c 2 3 6 8
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MapReduce: A Dataflow Programming Model 
with Roots in Functional Programming

¢ What is the Advantage of adopting a “Dataflow”  Model ?
¢ What is the Advantage of adopting a “Functional 

Programming” approach ? 
l There are NO  Side Effects of Computation for PURE Functional 

Programming

=> Significantly Simplify Parallelization & Failure Recovery
Consider the following (non-functional) imperative programming example:

var x = 0 ;
async { x = x + 1 }
async { x = x * 2 }

// x can be 0, 1 or 2

References: 
1. Kevin Hammond, “Why Parallel Functional Programming Matters: Panel Statement”, Reliable Software Technologies, Ada-

Europe 2011, LNCS Vol. 6652, 2011, http://link.springer.com/book/10.1007/978-3-642-21338-0
2. Martin Odersky, “Working Hard to Keep it Simple -- Why Functional Programming & Parallel-processing is a good fit,” Keynote 

for OSCON Java 2011, https://www.youtube.com/watch?v=3jg1AheF4n0



8

But MapReduce is NOT good for…
¢ Jobs require multiple iterations and multiple-stages of 

operations

¢ Low-latency jobs

¢ Jobs that need shared state/ coordination
l Tasks are shared-nothing
l Shared-state requires scalable state store

¢ Jobs on small datasets

¢ Finding individual records

For some of these, we will introduce alternative 
computational models/ platforms, e.g. GraphLab, Spark, later 
in the course

1/10/24 Jure Leskovec, Stanford CS246: Mining Massive Datasets, 
http://cs246.stanford.edu
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Big Data Programming Models beyond MapReduce
¢ Many of them still takes the “Dataflow”  programming model BUT 

generalize MapReduce by:
i) Relaxing the Rigid (fixed) structure of the Dataflow graph (topology) 

imposed by MapReduce, e.g.
l Many can support Dataflow computations which can be expressed as a 

Directed Acyclic Graph (DAG), e.g. Dryad, Tez, Spark, Storm, etc. 
l More recent ones can even support computations which correspond to  Stateful

and Loopy Dataflow graphs, e.g. Naiad (from MSR) and Tensorflow (Google)
ii) Support Higher-level programming construct, e.g. 

l Use SQL-like query language, e.g. Hive and Spark SQL, and provide under-
the-hood parallelization and optimization, by automatically transform the 
computation to some coordinated MapReduce job(s).

l Create new Dataflow languages and systems which specify parallel 
operations/transformation on a distributed collections of (data) objects, e.g.
LINQ, DryadLINQ, Pig-latin/Pig, Spark

¢ Other Big Data programming frameworks/ models for specific types of input 
data, e.g. to support Graph-based problems (e.g. GraphLab, Pregel) or 
Stream-based computation (Storm).



10

The Big Data Processing Stack:
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Typical Architecture: Different Component Systems 
for various Services and Functionalities 
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Typical Architecture: Different Component Systems 
for various Services and Functionalities 

e.g. HiveQL of Hive (Facebook), 
BigSQL (IBM), Apache Drill, 
Cloudera Impala ; Pig (Yahoo);       
Spark SQL,  DryadLINQ,
other NoSQL query languages 
(NoSQL = Not-only-SQL)

e.g. Hadoop/ MapReduce, 
GraphLab (CMU/UWash), 
Spark (Berkeley), Storm/Heron 
(Twitter), Dryad (Microsoft),  TeZ,   
Pregel/ Giraph (Apache), Flink

e.g. BigTable(Google)/ Hbase(open)
SimpleDB, DynamoDB (Amazon), 
Cassandra(Facebook) 

Distributed FileSystems:
e.g.HDFS, GFS, ceph
Cloud-based Data-Store Service/System: 
e.g. Amazon S3, EBS, OpenStack Swift , 
Amazon Dynamo <key,value> store
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Architecture Sample 1: The (old) Google-way 
(circa 2004)
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Architecture Sample 2: The Hadoop-way (e.g. Yahoo)
(circa 2007)
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Beyond Hadoop/MapReduce:
Another Main-stream Big Data Processing Framework
¢ Spark & Big (Berkeley) Data Analytic Stack (BDAS) by UC Berkeley

Reference:    https://amplab.cs.berkeley.edu/software/ 
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Recap:
Runtime Support & Resource Management 

for MapReduce/ Hadoop 1.0
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MapReduce
¢ Programmers specify two functions:

map (k, v) → <k’, v’>*
reduce (k’, v’) → <k’’, v’’>*
l All values with the same key are sent to the same reducer

¢ The execution framework handles everything else…

What’s “everything else”?
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The MapReduce “Runtime”
¢ Handles scheduling

l Assigns workers to map and reduce tasks

¢ Handles “data distribution”
l Moves processes to data

¢ Handles synchronization
l Gathers, sorts, and shuffles intermediate data

¢ Handles errors and faults
l Detects worker failures and restarts

¢ Everything happens on top of the distributed Google File 
System (or HDFS)
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Google File System 

• Chunk servers hold blocks of the file (64MB per chunk)
• Replicate chunks (chunk servers do this autonomously). More bandwidth 

and fault tolerance
• Master distributes, checks faults, rebalances (Achilles heel)
• Client can do bulk read / write / random reads

Ghemawat, Gobioff, Leung, 2003
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Adapted from (Ghemawat et al., SOSP 2003)

(file name, block id)

(block id, block location)

instructions to datanode

datanode state
(block id, byte range)

block data

HDFS namenode

HDFS datanode

Linux file system

…

HDFS datanode

Linux file system

…

File namespace
/foo/bar

block 3df2

Application

HDFS Client

HDFS Architecture
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Namenode Responsibilities
¢ Managing the file system namespace:

l Holds file/directory structure, metadata, file-to-block mapping, 
access permissions, etc.

¢ Coordinating file operations:
l Directs clients to datanodes for reads and writes
l No data is moved through the namenode

¢ Maintaining overall health:
l Periodic communication with the datanodes
l Block re-replication and rebalancing
l Garbage collection

¢ Namenode can be Archille’s heel – Single point of failure or 
bottleneck of scalability for the entire FS:
l Need to have a Backup Namenode HDFS (or Master in GFS)
l Compared to the fully-distributed approach in Ceph
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Resource Management Platforms
for Big Data Processing Clusters
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Putting everything together…

datanode daemon

Linux file system

…

tasktracker

slave node

datanode daemon

Linux file system

…

tasktracker

slave node

datanode daemon

Linux file system

…

tasktracker

slave node

namenode

namenode daemon

job submission node

jobtracker
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split 0
split 1
split 2
split 3
split 4

worker

worker

worker

worker

worker

Master

User
Program

output
file 0

output
file 1

(1) submit

(2) schedule map (2) schedule reduce

(3) read
(4) local write

(5) remote read
(6) write

Input
files

Map
phase

Intermediate files
(on local disk)

Reduce
phase

Output
files

Adapted from (Dean and Ghemawat, OSDI 2004)

Job Scheduling for MapReduce/Hadoop 1.0
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Practical Scalability Limits of Hadoop1.0
v Scalability

v Maximum Cluster Size – 4000 Nodes
v Maximum Concurrent Tasks – 40000
v Coarse synchronization in Job Tracker

v Single point of failure
v Failure kills all queued and running jobs
v Jobs need to be resubmitted by users

v Restart is very tricky due to complex state
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YARN for Hadoop 2.0

¢ YARN (Yet Another Resource Negotiator) provides a 
resource management platform for Cluster to support 
general Distributed/Parallel Applications/Frameworks 
beyond the MapReduce computational model.

V. K. Vavilapalli, A. C. Murthy, “Apache Hadoop YARN: Yet Another Resource Negotiator”, in 
ACM Symposium on Cloud Computing (SoCC)  2013.
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1/10/24 Jure Leskovec, Stanford CS246: Mining Massive Datasets, 
http://cs246.stanford.edu

Hadoop 1.0 vs. Hadoop 2.0 Ecosystem
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Scalability/Flexibility Issues of the 
MapReduce/ Hadoop 1.0 Job Scheduling/Tracking

¢ The MapReduce Master node (or Job-tracker in Hadoop 1.0) 
is responsible to monitor the progress of ALL tasks of all jobs 
in the system and launch backup/replacement copies in case 
of failures
l For a large cluster with many machines, the number of tasks to be 

tracked can be huge 
=> Master/Job-Tracker node can become the performance bottleneck

¢ Hadoop 1.0 platform focuses on supporting MapReduce as its 
only computational model ; may not fit all applications

¢ Hadoop 2.0 introduces a new resource management/ job-
tracking architecture, YARN [1], to address these problems

[1] V.K. Vavilapalli, A.C.Murthy, “Apache Hadoop YARN: Yet Another Resource Negotiator,” 
ACM Symposium on Cloud Computing 2013.
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A Big Data Processing Stack with YARN
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Hadoop2.0/YARN Architectural Overview
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YARN Framework
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1/10/24 Jure Leskovec, Stanford CS246: Mining Massive Datasets, 
http://cs246.stanford.edu

¢ Multiple frameworks (Applications) can run on top of YARN to share a Cluster, e.g.
MapReduce is one framework (Application),  MPI, or Storm are other ones.

¢ YARN splits the functions of JobTracker into 2 components:  resource allocation 
and job-management (e.g. task-tracking/ recovery):
l Upon launching, each Application will have its own Application Master (AM), e.g. MR-AM in the figure 

above is the AM for MapReduce, to track its own tasks and perform failure recovery if needed
l Each AM will request resources from the YARN Resource Manager (RM) to launch the Application’s 

jobs/tasks (Containers in the figure above)  ;
l The YARN RM determines resource allocation across the entire cluster by communicating with/ 

controlling the Node Managers (NM), one NM per each machine.

Cluster Resource Management w/ YARN in Hadoop2.0
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YARN Execution Sequence
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YARN Application Models
¢ Application Master (AM) per Job 

l Most simple for batch 
l Used by MapReduce (v2) 

¢ Application Master per Session 
l Runs multiple jobs on behalf of the same user 
l Added in Tez ; 
l Also for Spark (one AM per SparkContext, w/ Long-

lived enhancement)

¢ AM as permanent service, supporting Multiple 
Users 
l Always on, waits around for jobs to come in 
l Used for Impala (with Llama Adapter to support 

separate-user/queue billing of YARN) 
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Example: Running MapReduce (v2) on YARN

¢ Each MapReduce Job has a separate instance of AM

¢ A Separate MapReduce Job History Server to track MR 
job history

¢ YARN runs Shuffle as a persistent, auxiliary service 
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Hadoop 2.0 vs. Hadoop1.0
v Hadoop 2.0 includes YARN’s Multi-tenant Support for different Big Data 

Processing Frameworks
v YARN Fault Tolerance and Availability

v Resource Manager
v No single point of failure – state saved in ZooKeeper
v Application Masters are restarted automatically on RM restart

v Application Master
v Optional failover via application-specific checkpoint
v MapReduce applications pick up where they left off via state saved in HDFS

v Wire Compatibility
v Protocols are wire-compatible
v Old clients can talk to new servers
v Rolling upgrades

v Besides YARN, Hadoop 2.0 also supports High Availability and Federation
v High Availability takes away the Single Point of failure from HDFS Namenode and 

introduces the concept of the QuorumJournalNodes to sync edit logs between 
active and standby Namenodes

v Federation allows multiple independent namespaces (private namespaces, or 
Hadoop as a service)
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Apache Mesos
(http://mesos.apache.org)

httphtt
¢ Another competing Cluster Resource Management platform

¢ Enable multiple frameworks to share same cluster resources 
(e.g., MapReduce, Storm, Spark, HBase, etc)

¢ Originated from UCBerkeley’s BDAS project ;
l B. Hindman et al, “Mesos: A Platform for Fine-Grained Resource Sharing in the Data 

Center”, Usenix NSDI 2011. 

¢ Hardened via Twitter’s large scale in-house deployment 
l 6,000+ servers, 
l 500+ engineers running jobs on Mesos

¢ Third party Mesos schedulers 
l AirBnB’s Chronos ; Twitter’s Aurora

¢ Mesospehere: startup to commercialize Mesos

Mesos
Spark

Spark
Stream. Spark 

SQL

BlinkDB
GraphX

MLlib
MLBase

HDFS, S3, … 
Tachyon



Motivation of Mesos

Hadoop

Storm

MPI
Shared cluster

Previously: Static partitioning of 
a cluster among different big 
data processing frameworks

Mesos aims to achieve
dynamic sharing of cluster 

across different frameworks

u Hard to fully utilize machines           
(e.g., X GB RAM & Y CPUs)

u Hard to scale elastically (to take 
advantage of statistical multiplexing) 

u Hard to deal with failures
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Mesos as a Data-Center “Kernel” 

¢ Like YARN, Mesos 
provides a Node 
Abstraction of the 
entire Cluster

¢ Like YARN, Mesos 
is a common 
resource sharing 
layer over which 
diverse 
frameworks can 
run
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System Architecture of Mesos
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Framework Isolation

¢ Mesos uses OS isolation mechanisms, such as Linux containers 
and Solaris projects

¢ Containers currently support CPU, memory, IO and network 
bandwidth isolation

¢ Not perfect, but much better than no isolation



47

Mesos’ use of Container Technology
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Design Elements

¢Fine-grained sharing:
l Allocation at the level of tasks within a job
l Improves utilization, latency, and data locality

¢Resource offers:
l Simple, scalable application-controlled scheduling 

mechanism



Element 1: Fine-Grained Sharing

Framework 1

Framework 2

Framework 3

Coarse-Grained Sharing (HPC): Fine-Grained Sharing (Mesos):

+ Improved utilization, responsiveness, data locality  

Storage System (e.g. HDFS) Storage System (e.g. HDFS)

Fw. 1

Fw. 1Fw. 3

Fw. 3 Fw. 2Fw. 2

Fw. 2

Fw. 1

Fw. 3

Fw. 2Fw. 3

Fw. 1

Fw. 1 Fw. 2Fw. 2

Fw. 1

Fw. 3 Fw. 3

Fw. 3

Fw. 2

Fw. 2
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Element 2: Resource Offers
¢Option: Global scheduler

l Frameworks express needs in a specification language, global 
scheduler matches them to resources

+ Can make optimal decisions
¢– Complex: language must support all framework 
needs
– Difficult to scale and to make robust
– Future frameworks may have unanticipated needs
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Element 2: Resource Offers
¢Mesos: Resource offers

l Offer available resources to frameworks, let them pick 
which resources to use and which tasks to launch

+ Keep Mesos simple, let it support future frameworks

- Decentralized decisions might not be optimal



Mesos Architecture

MPI job

MPI 
scheduler

Hadoop job

Hadoop
scheduler

Allocation 
module

Mesos
master

Mesos slave
MPI 

executor

Mesos slave
MPI 

executor

tasktask

Resource 
offer

Pick framework to 
offer resources to



Mesos Architecture

MPI job

MPI 
scheduler

Hadoop job

Hadoop
scheduler

Allocation 
module

Mesos
master

Mesos slave
MPI 

executor

Mesos slave
MPI 

executor

tasktask

Pick framework to 
offer resources toResource 

offer

Resource offer =
list of (node, availableResources)

E.g.  { (node1, <2 CPUs, 4 GB>),
(node2, <3 CPUs, 2 GB>) }



Mesos Architecture

MPI job

MPI 
scheduler

Hadoop job

Hadoop
scheduler

Allocation 
module

Mesos
master

Mesos slave
MPI 

executor
Hadoop
executor

Mesos slave
MPI 

executor

tasktask

Pick framework to 
offer resources to

task
Framework-specific 

scheduling

Resource 
offer

Launches and 
isolates executors



Another  Resource Offering Example



Optimization: Filters

• Let frameworks short-circuit rejection by 
providing a predicate on resources to be 
offered
»E.g. “nodes from list L” or “nodes with > 8 GB RAM”
»Could generalize to other hints as well

• Ability to reject still ensures correctness when 
needs cannot be expressed using filters



Revocation

• Mesos allocation modules can revoke (kill) 
tasks to meet organizational SLOs

• Framework given a grace period to clean up

• “Guaranteed share” API lets frameworks 
avoid revocation by staying below a certain 
share



Scheduler Callbacks

resourceOffer(offerId, offers)
offerRescinded(offerId)
statusUpdate(taskId, status)
slaveLost(slaveId)

Executor Callbacks

launchTask(taskDescriptor)
killTask(taskId)

Executor Actions

sendStatus(taskId, status)

Scheduler Actions

replyToOffer(offerId, tasks)
setNeedsOffers(bool)
setFilters(filters)
getGuaranteedShare()
killTask(taskId)

Mesos API



A Big Data Processing Stack w/ Mesos



Mesos only performs inter-framework scheduling (e.g. fair 
sharing), which is easier than intra-framework scheduling
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Result: 
Scaled to 50,000 
emulated slaves,
200 frameworks,
100K tasks (30s len)

Scalability



Fault Tolerance

• Mesos master has only soft state: list of 
currently running frameworks and tasks

• Rebuild when frameworks and slaves re-
register with new master after a failure

Result: fault detection and recovery in ~10 sec



Mesos Implementation Statistics

§ 20,000 lines of C++

§ Master failover using ZooKeeper

§ Frameworks ported: Hadoop1.0, MPI, Storm, etc

§ Specialized framework: Spark, for iterative jobs
(up to 20× faster than Hadoop)

§ Open source under Apache license



Other  Schedulers/ Resource Management 
Platforms for 

Big Data Processing Clusters
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Approach 1: Centralized Resource Management

A. Verma, L. Pedrosa, “Large-scale cluster management at Google with Borg”, Eurosys 2015

M. Schwarzkopf, A. Konwinski, M.Abd-El-Malek, J. Wilkes, “Omega: flexible, scalable schedulers for large 
compute clusters,” Eurosys 2013 
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Design Options for Centralized Resource Management:
Monolithic[Hadoop1.0, YARN]  vs.Two-level[Mesos] vs.Shared-state[Omega, Borg]
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High-level Architecture of Google’s Borg

A. Verma, L. Pedrosa, “Large-scale cluster management at Google with Borg”, Eurosys 2015
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Borg Architecture - Borgmaster

● Each cell contains a Borgmaster
● Each Borgmaster consists of 2 processes:

○ Main Borgmaster process
○ Scheduler

● Multiple replicas of each Borgmaster
● Role of (elected leader) Borgmaster:

○ submission of job, termination of any of job’s task 



68

Borg Architecture - Borglet

● Local Borg agent on every cell
○ starts/stops/restarts tasks
○ Manages local resources
○ Rolls over debug logs

● Polled by Borgmaster to get machine’s current state
● If a Borglet does not respond to several poll 

messages, it is marked as down
○ Tasks re-distributed
○ If communication is restored, Borgmaster tells 

Borglet to kill rescheduled tasks
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How does Borg work?

● Users submit “jobs”
○ Each “job” contains 1+ “task” that all run the same 

program/binary
○ Runs inside containers (not VMs as it would cost 

higher latency)
● Each “job” runs on one “cell”

○ A “cell” is a set of machines that run as one unit

● Two main types of jobs:
○ “Prod” job :  long-running server jobs, 

higher priority
○ “Non-prod” job :  quick batch jobs, lower 

priority
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How does Borg work?

● Allocs:
○ Reserved set of resources in one machine
○ Can run multiple instances of a task, different 

tasks from many jobs, or future tasks 
● Priority and quota:

○ Each job has a priority 
○ Preemption disallowed between “prod” jobs. 
○ Quota refers to vector of resource quantities for 

period of time
● Support for naming and monitoring
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Borg Architecture - Scheduling

● Borgmaster adds new jobs to a pending queue after 
recording it in the Paxos store

● A scheduler (primarily operates on tasks) scans and 
assigns tasks to machines
○ Feasibility checking
○ Scoring

● E-PVM vs “best-fit”
○ E-PVM leaves headroom for load-spikes but has 

increased fragmentation
○ Best-fit fills machines as tightly as possible, but 

hurts “bursty loads”
● Current model is a hybrid of both

○ Borg will kill lower priority tasks until it finds room 
for an assigned task
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Techniques Borg uses for managing utilization
● Cell-sharing: sharing prod and non-prod tasks

○ Resource reclaiming
○ Not sharing prod and non-prod work would increase 

machine needs by 20-30%
● Large cells: to allow large computations and decrease 

fragmentation 
○ splitting up jobs and distributing them requires significantly 

more machines
● Fine-grained resource requests

○ fixed size containers/VMs not ideal
○ instead there are “buckets” of CPU/memory requirements

● Resource reclamation: jobs specify limits
○ Borg can kill tasks that use more RAM or disk space than 

requested
○ Throttle CPU usage
○ Prioritize prod tasks over non-prod
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Borg Architecture - Scalability

● Ultimate scalability limit is unknown

○ Single Borgmaster can manage thousands of 
borglets

○ Rates above 10,000 tasks per minute

○ Busy Borgmaster uses 10-14 CPU cores and 
50GiB RAM
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Borg - Achieving Availability

● To mitigate inevitable failures, Borg will:
○ Automatically reschedule evicted tasks
○ Reduce correlated failures by distributing across 

failure domains
○ Limits downtime due to maintenance 
○ Use “declarative desired-state representations 

and idem-potent mutating operations” to ease 
resubmission of forgotten requests

○ Avoid task to machine pairings that cause 
crashes

○ Use a logsaver to recover critical data written to 
a local disk

● Achieve 99.99% availability in practice
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Isolation
● Security:

○ Linux chroot command used for process 
isolation 

○ Standard sandboxing techniques used for 
running external software

● Performance:
○ Borg makes explicit distinction between 

LS (latency-intensive) tasks and batch 
tasks. Helps for priority-based 
preemption

○ Borg uses notion of compressible 
resources (CPU cycles, disk I/O 
bandwidth) and non-compressible 
resources (RAM, disk space)
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Why is it important to have isolation, and 
how does Borg implement it?
● To protect an app from Noisy, Nosy and 

Messy neighbors
● Sharing machines between applications 

increases utilization, but isolation is needed 
to prevent tasks from interfering 
○ Security: rogue tasks can affect other tasks, and information should not be visible 

between tasks
○ Performance:

■ Utilization can be decreased by users inflating resource requests to prevent 
interference

■ Again, rogue tasks can affect your task

● Security: Linux chroot jail is the primary 
security isolation mechanism

● Performance: Linux cgroup-based container
○ Also appclass is used to help with overload and overcommitment
○ High priority LS (latency-sensitive) tasks 
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Approach 2: Distributed Resource Management

K. Ousterhout et al, “Sparrow: Distributed, Low Latency Scheduling”, ACM SOSP 2013

E. Boutin et al, “Apollo: Scalable and Coordinated Scheduling for Cloud-Scale Computing”, Usenix OSDI 2014
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High-level Distributed Resource Management 
Architecture of Microsoft’s Apollo

E. Boutin et al, “Apollo: Scalable and Coordinated Scheduling for Cloud-Scale Computing”, OSDI 2014
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Centralized vs. Distributed Resource Management



80

Approach 3: Hybrid (Distributed and Centralized) 
Resource Management in Microsoft’s Mercury

K. Karanasos et al, “Mercury: Hybrid Centralized and Distributed Scheduling in Large Shared Clusters”,
Usenix ATC 2015
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Mercury Architecture over YARN
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Operations and Implementation of Mercury



Resource
Management 

Platform for Clusters

Scheduling/Resource Sharing
paradigm

Scalability  
Multiple Programming

Frameworks/ Multi-
tenant Support

Hadoop 1.0 Centralized Limited but OK No

YARN in Hadoop 2.0 Centralized Good Yes

Mesos
Centralized (Two-level) via 

Resource Offers to Individual 
Frameworks

Better Yes

Apollo
Distributed and Loosely 

Coordinated (via Expected 
Resource Wait-Time matrix)

Very Good Yes

Borg, Omega

Centralized per-cell BorgMaster
which allows multiple // schedulers 
to performs optimistic-concurrent

allocation followed by checking

Very Good Yes

Mercury

Hybrid 
(Centralized and Distributed

scheduling for Big and Small jobs 
respectively)

Very Good Yes

Comparisons of  Recent Resource Management 
Platforms for Clusters



Cloud Native Applications  84

Cloud-Native Applications
(Micro-service oriented) 
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Cloud-Native Applications: Motivation
¢ Elasticity and Ubiquity of Cloud Infrastructure (Data-Center-

scale Computing) have enabled new generation of 
applications, use-cases and business opportunities:
l Netflix, Airbnb, Spotify, Pinterest, Snapchat, Whatspp,…

¢ Example: Netflix:
l Value Proposition (Competitive Advantage):

• Low Cost Video Streaming with Superb User-experience at scale
l Application Properties and Unique Requirements

• > 100 millions of users in 190 countries (mostly in US)
• Vast variance in Load, within minutes (evenings, campaigns, …)
• 10,000s of servers
• 1000s of daily application changes across 100s of functions

• Video streaming, Catalog, Recommendations, subscription
• ~1 update every minute

1/10/24
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Cloud-Native Applications: 
Requirements-driven Design Principles

¢ Low Cost + Variance in Load + Superb User Experience
l Can’t afford Over or Under Provisioning => Auto-Scaling Elasticity 

¢ Large-scale Infrastructure + Inevitable Hardware Failures + 
Superb User Experience
l Must accommodate HW failures w/o downtime => Design for Failure

¢ Frequent Application Updates + Large-scale + Superb User 
Experience
l Can’t afford redeploying everything everytime => Modularity
l Can’t afford testing everything everytime => Stable Internal APIs

¢ Frequent Application Updates + Low Cost + Superb User 
Experience
l Can’t afford manual QA/ admin effort for each update => Automation 

in Deployment
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Cloud-Native Applications: 
Design-driven Common Services
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Evolution of Platforms for
Cloud-Native Applications: 

¢ New Platforms emerged, offering common services required 
by Cloud-Native Applications:
l Auto-Scaling, Replication, Load-Balancing, Health Monitoring, Service 

Discovery, Application-Level Routing, Programmability
l Started in form of “Platform as a Service” (PaaS)
l Eventually generalized to the Container-based Orchestration approach
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Different forms of 
Cloud-based Computing Services/Offerings 

from Google
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Deploying Cloud-Native 
(Micro-service oriented) 

Applications

Container Technologies to our rescue !
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VMs vs. Containers
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Virtual Machine vs. Container 

Source: Claus Pahl, “Containerization and the PaaS Cloud,” IEEE Cloud Computing Magazine, 
May/June 2015

(e.g. Docker)

Host OS kernel with Light-Weight 
Virtualization support, e.g. LXC (LinuX Container)
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Basic Operations of a Docker system

Source 
Code 

Repository

Docker
file
For 
A

Docker
Engine

Docker
Container

Image 
Registry

Build

D
ocker 

Host 2 OS 2 (Linux)

Container A

Container B

Container C

Container A

Push

Search Pull

Run

Host 1  OS 
(Linux)
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¢ Units of software delivery (ship it!) 

● run everywhere 

– regardless of kernel version 

– regardless of host distribution 

– (but container and host architecture must match*) 

● run anything 

– if it can run on the host, it can run in the container 

– i.e., if it can run on a Linux kernel, it can run

*Unless you emulate CPU with QEMU and binfmt 

Docker Containers 
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¢ NOT A Virtual Hark Disk (VHD) file

¢ NOT A FILESYSTEM  

¢ uses a Union File Systemn File System

¢ a read-only Layer

¢ do not have state

¢ Basically a tar file

¢ Has a hierarchy  

• Arbitrary depth

• Fits into the Docker Registry 

Docker Image structure

https://docs.docker.com/terms/layer/%23ufs-def
https://docs.docker.com/terms/layer/%23layer-def
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Google’s Kubernetes: -
Merging 2 Different Types of Containers
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Hypervisors vs. Linux Containers

Hardware
Operating System

Hypervisor
Virtual Machine

Operating 
System

Bins / libs

App App

Virtual Machine

Operating 
System

Bins / libs

App App

Hardware
Hypervisor

Virtual Machine

Operating 
System

Bins / libs

App App

Virtual Machine

Operating 
System

Bins / libs

App App

Hardware
Operating System

Container

Bins / libs

App App

Container

Bins / libs

App App

Type 1 Hypervisor Type 2 Hypervisor Linux Containers

Containers are isolated, but share OS 
and, where appropriate, libs / bins.
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its
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Why Containers ?
¢ Ease of development:

l User makes jobs based on containers ; the cluster/cloud schedule those 
jobs for them

• User don’t need to worry about machines or the OS

¢ High Resource Utilization: (more efficient)
l The scheduler can pack many containers per machine 
l Can mix Live-services and Batch workload

• Use Batch-job to fill in the holes

¢ Ease of Operation: (fewer staff per job)
l e.g. All jobs use latest security patches
l More shared code among projects (shared services and code)
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Kubernetes (K8s)
κυβερνήτης: Greek for “pilot” or “helmsman of a ship”

The open-source cluster manager from Google

¢ Container Orchestrator

¢ Run Docker Container

¢ Support multiple cloud and bare-metal environments

¢ Inspired and informed by Google’s experiences & internal 
systems, e.g. the Borg scheduler

¢ Open source, written in Go: 
l Google has donated it to Cloud Native Computing Forum (CNCF)

Key:    Kubernetes manages Applications NOT Machines
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Kubernetes: Higher Level of Abstraction
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Kubernetes – Google’s path towards 
“Cloud-native” Applications

¢ Kubernetes serves as a distributed platform for Hosting and  
Orchestrating Containers in a clustered environment
l Support: Container Grouping (Pods), Replication, Scheduling, 

Load-Balancing, Auto-Healing, Scaling, Service Discovery, etc .

¢ Cloud-native Apps often structured as Interacting Microservices
l Encapsulated states with APIs, like “Objects”
l Mix of Programming Languages
l Mix of Teams
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Services Model
¢ Each app lives in an environment of shared services

l Storage, monitoring, logging
l Master election, deployment, testing

¢ Services are Abstract
l A “Service” is just a long-lived abstract name
l Varied Implementations over time (versions)

• Multiple versions running at a time
• Required for “canary” testing -- deploy new version bit-by-bit gradually

• Usually new versions are backward compatible
• Sometimes not => must eventually update ALL clients
• Running multiple versions gives clients/users some time to update

l Services can be (and often are) updated independently

¢ Kubernetes routes to the right implementation
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Managing Dependencies w/ K8s
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Running/ Managing Services w/ K8s
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Managing Service Dependenices w/ K8s
Example: Rolling Upgrade with Labels
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System Architecture of Kubernetes 
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Recall - The Architecture of Google’s Borg

A. Verma, L. Pedrosa, “Large-scale cluster management at Google with Borg”, Eurosys 2015



Kubernetes Architecture Overview

Source: Introduction to Kubernetes

Kubernetes Architecture

https://docs.google.com/presentation/d/1zrfVlE5r61ZNQrmXKx5gJmBcXnoa_WerHEnTxu5SMco/edit


How Kubernetes works?

In Kubernetes, there is one (or more) master node and 
multiple worker nodes, each worker node can handle multiple 

pods. Pods are just a bunch of containers clustered together 
as a working unit. You can start designing your applications 

using pods. Once your pods are ready, you can specify pod 
definitions to the master node, and how many you want to 

deploy. From this point, Kubernetes is in control. It takes the 

pods and deploys them to the worker nods.
Source: https://itnext.io/successful-short-kubernetes-stories-for-devops-architects-677f8bfed803

50K feet on how Kubernetes works

https://itnext.io/successful-short-kubernetes-stories-for-devops-architects-677f8bfed803


Kubernetes’ High-Level Architecture Overview

Source: https://www.weave.works/blog/what-does-production-ready-really-mean-for-a-kubernetes-cluster

https://www.weave.works/blog/what-does-production-ready-really-mean-for-a-kubernetes-cluster


Kubernetes’ High-Level Architecture Overview



Core Concepts of Kubernetes
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Borg vs. Kubernetes Comparisons:
● Borg is a predecessor to Kubernetes
● Borg groups tasks by 'job’ and simple numeric index; Kubernetes adds 

'labels' for greater flexibility.
● Kubernetes allows for Docker and other containers, while Borg only 

allows LMCTFY
● Borg exposes the API of its various components to allow external 

program to access/control cluster-resource directly ; All accesses to a 
K8s-cluster must go through a single-point-of-contact: the API-server

● Single IP per machine in Borg complicates things
○ Because of  Linux namespaces, VMs, IPv6, and software-defined 

networking, Kubernetes assigns every “pod” and service its own 
IP address

○ Allows developers to choose ports and removes the infrastructure 
complexity of managing ports

● Borg is not open source or available for use outside of Google unlike 
Kubernetes
○ Both work on bare metal, but Kubernetes can work on various 

cloud hosting providers, “such as Google Compute Engine.”



Core Concepts of Kubernetes (2)● Controllers
○ Deployments →
○ ReplicaSet →
○ ReplicationController →
○ DaemonSet →

● StatefulSets →
● ConfigMaps →
● Secrets →
● Persistent Volumes (attaching storage to containers) →
● Life Cycle of Applications in Kubernetes →

○ Updating Pods
○ Rolling updates
○ Rollback

More Concepts of Kubernetes

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/workloads/controllers/replicationcontroller/
https://kubernetes.io/cn/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/cn/docs/concepts/workloads/controllers/deployment/
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What is a Deployment in K8s ?
● A Deployment provides declarative updates for Pods and 

ReplicaSets, specifying the “desired” state of a 
deployment
● The Deployment Controller is responsible to change the actual 

state to the desired state. This is the so-called “reconciliation” 
process.

Use Case of Deployments:
● Create a Deployment to rollout a ReplicaSet
● Declare the new state of the Pods
● Rollback to an earlier Deployment revision
● Scale up the Deployment to facilitate more Load
● Pause for Deployment to apply fixes to its 

PodTemplateSpec before resume it to start a new rollout



Kubernetes resources explained (1)

Resource (abbr.) [API version] Description

Namespace* (ns) [v1] Enables organizing resources into non-overlapping groups 
(for example, per tenant) 

Deploying 
Workloads

Pod (po) [v1]

ReplicaSet

ReplicationController

Job

CronJob

DaemonSet

StatefulSet

Deployment

The basic (atomic) deployable unit containing one or more 
processes in co-located containers 

Keeps one or more pod replicas running 

The older, less-powerful equivalent of a ReplicaSet

Runs pods that perform a completable task 

Runs a scheduled job once or periodically 

Runs one pod replica per node (on all nodes or only on 
those matching a node selector) 

Runs stateful pods with a stable identity 

Declarative deployment and updates of pods 

Source: Kubernetes in Action book by Marko Lukša

Kubernetes Resources Explained (1)

https://www.manning.com/books/kubernetes-in-action


Resource (abbr.) [API version] Description

Services Service (svc) [v1]

Endpoints (ep) [v1]

Ingress (ing) [extensions/v1beta1]

Exposes one or more pods at a single and stable IP 
address and port pair 

Defines which pods (or other servers) are exposed 
through a service 

Exposes one or more services to external clients through 
a single externally reachable IP address

Config ConfigMap (cm) [v1]

Secret [v1]

A key-value map for storing non-sensitive config options 
for apps and exposing it to them

Like a ConfigMap, but for sensitive data

Storage PersistentVolume* (pv) [v1]

PersistentVolumeClaim (pvc) [v1]

StorageClass* (sc) [storage.k8s.io/v1]

Points to persistent storage that can be mounted into a 
pod through a PersistentVolumeClaim

A request for and claim to a PersistentVolume

Defines the type of storage in a PersistentVolumeClaim

Source: Kubernetes in Action book by Marko Lukša

Kubernetes Resources Explained (2)

https://www.manning.com/books/kubernetes-in-action


Resource (abbr.) [API version] Description

Scaling HorizontalPodAutoscaler (hpa) 
[autoscaling/v2beta1**]

PodDisruptionBudget (pdb) 
[policy/v1beta1]

Automatically scales number of pod replicas based on 
CPU usage or another metric

Defines the minimum number of pods that must remain 
running when evacuating nodes

Resources LimitRange (limits) [v1]

ResourceQuota (quota) [v1]

Defines the min, max, default limits, and default requests 
for pods in a namespace

Defines the amount of computational resources available 
to pods in the namespace

Cluster 
state

Node* (no) [v1]

Cluster* [federation/v1beta1] 

ComponentStatus* (cs) [v1] 

Event (ev) [v1]

Represents a Kubernetes worker node

A Kubernetes cluster (used in cluster federation) 

Status of a Control Plane component

A report of something that occurred in the cluster

Source: Kubernetes in Action book by Marko Lukša

Kubernetes Resources Explained (3)

https://www.manning.com/books/kubernetes-in-action


Kubernetes resources explained (4)
Resource (abbr.) [API version] Description

Security ServiceAccount (sa) [v1]

Role [rbac.authorization.k8s.io/v1]

ClusterRole*
[rbac.authorization.k8s.io/v1]

RoleBinding
[rbac.authorization.k8s.io/v1]

ClusterRoleBinding*
[rbac.authorization.k8s.io/v1]

PodSecurityPolicy* (psp) 
[extensions/v1beta1]

NetworkPolicy (netpol) 
[networking.k8s.io/v1]

CertificateSigningRequest* (csr) 
[certificates.k8s.io/v1beta1]

An account used by apps running in pods

Defines which actions a subject may perform on which 
resources (per namespace)

Like Role, but for cluster-level resources or to grant access 
to resources across all namespaces

Defines who can perform the actions defined in a Role or 
ClusterRole (within a namespace)

Like RoleBinding, but across all namespaces

A cluster-level resource that defines which security-
sensitive features pods can use

Isolates the network between pods by specifying which 
pods can connect to each other

A request for signing a public key certificate

Ext. CustomResourceDefinition* (crd) 
[apiextensions.k8s.io/v1beta1]

Defines a custom resource, allowing users to create 
instances of the custom resource

Kubernetes Resources Explained (4)



Source: Kubernetes effect by Bilgin Ibryam

Application Dependency on Kubernetes primitives

https://www.infoq.com/articles/kubernetes-effect


Source: https://blog.heptio.com/core-kubernetes-jazz-improv-over-orchestration-a7903ea92ca

How Kubernetes API works: A typical command flow

https://blog.heptio.com/core-kubernetes-jazz-improv-over-orchestration-a7903ea92ca


Source: https://medium.com/payscale-tech/imperative-vs-declarative-a-kubernetes-tutorial-4be66c5d8914

A more detail Kubernetes Command Flow

https://medium.com/payscale-tech/imperative-vs-declarative-a-kubernetes-tutorial-4be66c5d8914


Kubernetes is like Kafka: Event-Driven Architecture

Source: Events, the DNA of Kubernetes

Kubernetes: “Autonomous processes reacting to events from the API server”.

The Event-driven Architecture of Kubernetes
(similar to that of Kafka)

https://www.mgasch.com/post/k8sevents/


Source: Eric Brewer, ACM SoCC Keynote, 2015

Local and Distributed Abstractions/ Patterns



Source: Kubernetes effect by Bilgin Ibryam

Local and Distributed Abstractions/ Patterns

https://www.infoq.com/articles/kubernetes-effect
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Who “Manages” Kubernetes?

The CNCF is a child entity of the Linux Foundation and 
operates as a vendor neutral governance group.
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Project Stats for K8s

● Over 55,000 stars on Github

● 2000+ Contributors to K8s Core

● Most discussed Repository by a large margin

● 70,000+ users in Slack Team

07/2019
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Project Stats for K8s
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Challenges for 
Cloud-based K8s approach vs. Hadoop/YARN

¢ Development of Container-based technologies was geared towards Ephemeral (stateless) 
Compute-oriented Pods ; 
l Long-term state/ results need to be stored in External Persistent Storage

¢ For Big Data applications, complex stateful information and data stored on the persistent 
storage can be large while ephemeral compute nodes may need to be scaled separately

¢ Trade-offs between Data Locality and Compute Elasticity (Still remember the key idea of 
“Bringing Computation to the Data”  to avoid network-transfer bottleneck ?)

¢ Deploying Large-scale Persistent (stateful) apps/ services, e.g. Hadoop, over Ephemeral-
oriented K8s computing pods remains non-trivial but some solutions are emerging:
l Cloud Native Storage Solutions include: Container Storage Interface (CSI for K8s), Rook w/ Ceph, 

Rook w/ Cassandra, Rook w/ CockroachDB etc + Commercial ones, e.g. Trident from NetApp
l Some Hadoop-over-K8s efforts: e.g. BlueK8 and Kubedirectors, will Hadoop/YARN survive ? 

¢ Steep learning curve for K8s, e.g. for writing/ configuring app package to be deployed over it:
l YAML, Helm charts, Operators, etc…
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Summary of Kubernetes
¢ An Open-source, Cloud-Native Container-based Platform
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Backup Slides

More on Borg
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High-level Architecture of Google’s Borg

A. Verma, L. Pedrosa, “Large-scale cluster management at Google with Borg”, Eurosys 2015
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Borg Architecture - Borgmaster

● Each cell contains a Borgmaster
● Each Borgmaster consists of 2 processes:

○ Main Borgmaster process
○ Scheduler

● Multiple replicas of each Borgmaster
● Role of (elected leader) Borgmaster:

○ submission of job, termination of any of job’s task 
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Borg Architecture - Borglet

● Local Borg agent on every cell
○ starts/stops/restarts tasks
○ Manages local resources
○ Rolls over debug logs

● Polled by Borgmaster to get machine’s current state
● If a Borglet does not respond to several poll 

messages, it is marked as down
○ Tasks re-distributed
○ If communication is restored, Borgmaster tells 

Borglet to kill rescheduled tasks
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How does Borg work?

● Users submit “jobs”
○ Each “job” contains 1+ “task” that all run the same 

program/binary
○ Runs inside containers (not VMs as it would cost 

higher latency)
● Each “job” runs on one “cell”

○ A “cell” is a set of machines that run as one unit

● Two main types of jobs:
○ “Prod” job :  long-running server jobs, 

higher priority
○ “Non-prod” job :  quick batch jobs, lower 

priority
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How does Borg work?

● Allocs:
○ Reserved set of resources in one machine
○ Can run multiple instances of a task, different 

tasks from many jobs, or future tasks 
● Priority and quota:

○ Each job has a priority 
○ Preemption disallowed between “prod” jobs. 
○ Quota refers to vector of resource quantities for 

period of time
● Support for naming and monitoring
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Borg Architecture - Scalability

● Ultimate scalability limit is unknown

○ Single Borgmaster can manage thousands of 
borglets

○ Rates above 10,000 tasks per minute

○ Busy Borgmaster uses 10-14 CPU cores and 
50GiB RAM
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Isolation
● Security:

○ Linux chroot command used for process 
isolation 

○ Standard sandboxing techniques used for 
running external software

● Performance:
○ Borg makes explicit distinction between 

LS (latency-intensive) tasks and batch 
tasks. Helps for priority-based 
preemption

○ Borg uses notion of compressible 
resources (CPU cycles, disk I/O 
bandwidth) and non-compressible 
resources (RAM, disk space)
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Borg Architecture - Scheduling

● Borgmaster adds new jobs to a pending queue after 
recording it in the Paxos store

● A scheduler (primarily operates on tasks) scans and 
assigns tasks to machines
○ Feasibility checking
○ Scoring

● E-PVM vs “best-fit”
○ E-PVM leaves headroom for load-spikes but has 

increased fragmentation
○ Best-fit fills machines as tightly as possible, but 

hurts “bursty loads”
● Current model is a hybrid of both

○ Borg will kill lower priority tasks until it finds 
room for an assigned task
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Techniques used by Borg for 
Scalability:

○ Score caching 
■ Feasibility and scoring is expensive, scores are 

cached until properties of the machine or task 
change

○ Equivalence class
■ A group of tasks with identical requirements
■ Stems from tasks within a job having identical 

requirements and constraints
■ Easier than determining feasibility for every pending 

task and scoring every machine
○ Relaxed randomization

■ Scheduler examines machines in a random order 
until it has found enough feasible machines to score, 
and selects the best from this set

■ Speeds up assignments of tasks to machines



Cloud Native Applications  142

Borg - Achieving Availability

● To mitigate inevitable failures, Borg will:
○ Automatically reschedule evicted tasks
○ Reduce correlated failures by distributing across 

failure domains
○ Limits downtime due to maintenance 
○ Use “declarative desired-state representations 

and idem-potent mutating operations” to ease 
resubmission of forgotten requests

○ Avoid task to machine pairings that cause 
crashes

○ Use a logsaver to recover critical data written to 
a local disk

● Achieve 99.99% availability in practice
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Utilization - Main Goal of Borg

● Efficient utilization is very important for Google:
○ A few percentage improvement can save millions of 

dollars!
● Cell Sharing 
● Large Cells
● Fine-grained Resource Requests
● Resource Reclamation



Cloud Native Applications  144

Borg/Kubernetes Comparisons:
● Borg is a predecessor to Kubernetes
● Borg groups work by 'job'; Kubernetes adds 'labels' 

for greater flexibility.
● Kubernetes allows for Docker and other containers, 

while Borg only seems to allow LMCTFY
● Single IP per machine in Borg complicates things

○ Because of  Linux namespaces, VMs, IPv6, and 
software-defined networking, Kubernetes 
assigns every “pod” and service its own IP 
address

○ Allows developers to choose ports and removes 
the infrastructure complexity of managing ports

● Borg is not open source or available for use outside 
of Google unlike Kubernetes
○ Both work on bare metal, but Kubernetes can 

work on various cloud hosting providers, “such 
as Google Compute Engine.”
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How does the Borgmaster handle 
load spikes while minimizing 
fragmentations?
● Hybrid of E-PVM (worst-fit) and best-fit model 

○ E-PVM leaves headroom for large spikes, has 
large fragmentation

○ Best-fit model fills machines as tightly as 
possible
■ Pre-empts by killing lower priority tasks and 

add it back to pending queue
○ Large cells used to decrease fragmentation



Cloud Native Applications  146

Techniques Borg uses for managing 
utilization● Cell-sharing: sharing prod and non-prod tasks

○ Resource reclaiming
○ Not sharing prod and non-prod work would increase 

machine needs by 20-30%
● Large cells: to allow large computations and decrease 

fragmentation 
○ splitting up jobs and distributing them requires 

significantly more machines
● Fine-grained resource requests

○ fixed size containers/VMs not ideal
○ instead there are “buckets” of CPU/memory requirements

● Resource reclamation: jobs specify limits
○ Borg can kill tasks that use more RAM or disk space than 

requested
○ Throttle CPU usage
○ Prioritize prod tasks over non-prod
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Why is it important to have 
isolation, and how does Borg 
implement it?● To protect an app from Noisy, Nosy and 

Messy neighbors
● Sharing machines between applications 

increases utilization, but isolation is needed 
to prevent tasks from interfering 
○ Security: rogue tasks can affect other tasks, and information should not be visible 

between tasks
○ Performance:

■ Utilization can be decreased by users inflating resource requests to prevent 
interference

■ Again, rogue tasks can affect your task

● Security: Linux chroot jail is the primary 
security isolation mechanism

● Performance: Linux cgroup-based container
○ Also appclass is used to help with overload and overcommitment
○ High priority LS (latency-sensitive) tasks 


